《食品科学》微生物蛋白专栏:北京化工大学史硕博教授等:微生物利用一碳底物生产单细胞蛋白研究进展微藻

世界人口的持续增长导致肉类、乳制品等高蛋白食品的需求大幅增加,给我国食品蛋白的供应带来了较大挑战。微生物能够利用二氧化碳、甲烷、甲醇等一碳化合物生产高质量的单细胞蛋白,这种新型蛋白可应用于食品工业。建立微生物蛋白绿色生物制造的食品蛋白生产体系,对保障国家食物蛋白供给安全十分重要。此外,微生物转化一碳化合物制备单细胞蛋白的过程还可以减少碳排放、缓解温室效应,实现可持续发展。

北京化工大学 北京软物质科学与工程高精尖创新中心的傅晓莹、乔玮博、史硕博*主要总结微生物单细胞蛋白在食品工业中的应用;论述近年来微生物利用一碳化合物高效生产单细胞蛋白的研究进展;阐述天然一碳利用微生物的代谢网络机制以及改造前景;展望了利用合成生物学改造微生物从一碳底物生产单细胞蛋白的前景,旨在为微生物单细胞蛋白的商业化生产提供思路。

1、微生物单细胞蛋白在食品领域的商业化发展及安全性评价

单细胞蛋白在食品工业中的应用

微生物单细胞蛋白的蛋白质含量高,含有多种维生素和无机盐,是一种理想的食品蛋白质来源。单细胞蛋白具有良好的组织成型性可用于生产“人造肉”等新食品,Marlow Foods公司利用丝状镰刀菌(Fusarium venenatum)制成单细胞蛋白产品Quorn,该产品主要用于生产香肠肉饼、即食汉堡等,目前在全球15 个国家进行商业化生产。单细胞蛋白含有丰富的必需氨基酸、维生素和无机盐,可作为营养强化剂添加至饼干、饮料和奶制品中,提高食品的营养价值。此外,微藻单细胞蛋白含有丰富的不饱和脂肪酸,其中二十二碳五烯酸(EPA)和二十二碳六烯酸(DHA)是人体必需的脂肪酸,目前利用微藻生产的不饱和脂肪酸已作为营养保健食品销售。

单细胞蛋白应用于食品的安全性

安全性是单细胞蛋白能否作为食品生产原料首先要考虑的问题。影响单细胞蛋白安全性的因素包括微生物生产原料的安全性、单细胞蛋白的RNA含量、微生物本身是否产生毒素以及潜在的过敏原等。相关研究人员讨论了单细胞蛋白安全性并指出:生产单细胞蛋白菌株不能是病原菌,菌株不产生毒素;生产原料中重金属残留含量不能超过要求;在微生物培养和产品处理中要求无污染、无溶剂残留和热损害;最终产品应无病菌、无活细胞、无溶剂残留;单细胞蛋白产品必须进行动物毒性实和致癌实验,还要进行人体临床试验,测定人体对单细胞蛋白的耐受性和可接受性,才能用于食品生产。

2、天然微生物利用一碳化合物生产单细胞蛋白

甲醇酵母单细胞蛋白

甲醇酵母是一种重要的甲基营养酵母,包括巴斯德毕赤酵母(Komagataella pastoris)、多形汉逊酵母(Ogataea polymorpha)和博伊丁假丝酵母(Candida boidinii)等,这类酵母通过木酮糖单磷酸(XuMP)途径以甲醇为碳源进行生长。在甲醇酵母中,甲醇首先在醇氧化酶的作用下氧化生成甲醛,然后甲醛和5-磷酸木酮糖(Xu5P)反应,生成的3-磷酸甘油醛和磷酸二羟丙酮进入糖酵解途径参与细胞代谢。甲醇酵母细胞利用甲醇生成甲醛的过程在过氧化物酶体中进行,这有利于降低甲醛对细胞的毒性,从而提高细胞生长速度。甲醇是一种清洁能源,价格低廉且来源充足,利用甲醇为碳源是甲醇酵母用于单细胞蛋白生产的优势,甲醇利用效率决定了其蛋白生产过程的经济性。甲醇酵母培养结束后,培养液经离心、脱水干燥即可得到甲醇酵母单细胞蛋白(图1A)。

化能自养微生物单细胞蛋白

乙醇梭菌单细胞蛋白: 乙醇梭菌是一种厌氧的化能自养菌,它通过Wood-Ljungdahl途径利用CO或CO 2 作为碳源,以H 2 作为还原剂,生产燃料乙醇、微生物蛋白等高附加值化学品。乙醇梭菌等化能自养菌的发酵过程与现有工业发酵技术的相容性较好,是构建一碳气体生物转化细胞工厂的理想微生物之一。乙醇梭菌已通过中国工业微生物菌种保藏管理中心鉴定,经微生物药敏试验、菌种毒力试验、抗生素基因及致病基因检测分析证实乙醇梭菌安全无毒,可作为食品工业菌体蛋白的生产菌种。

好氧甲烷氧化菌单细胞蛋白: 好氧甲烷氧化菌在自然界中分布广泛,根据细菌结构和进化发育关系可分为3 种类型,分别属于变形菌门(Proteobacteria)γ亚型、α亚型和疣微菌门(Verrucomicrobia)。变形菌门的好氧甲烷氧化菌首先利用自身的甲烷单加氧酶将甲烷氧化为甲醇,甲醇再经甲醇脱氢酶催化氧化生成甲醛。随后,变形菌门γ亚型的好氧甲烷氧化菌通过核酮糖单磷酸(RuMP)途径将甲醛进一步转化利用,变形菌门α亚型的好氧甲烷氧化菌则将甲醛转化为甲酸后进入丝氨酸循环。疣微菌门的好氧甲烷氧化菌是先将甲烷转化成CO 2 ,再通过Calvin-Benson-Bassham(CBB)循环将CO 2 转化利用。

光能自养微生物单细胞蛋白

微藻单细胞蛋白: 微藻是重要的光合固碳微生物,它通过CBB循环将CO 2 转化为3-磷酸甘油醛进入中心碳代谢。微藻在光合作用的光反应阶段利用叶绿素将H 2 O分解成氧气,并产生ATP和还原力NADPH,在暗反应阶段利用光反应产生的ATP和NADPH将CO 2 同化为有机物用于自身生长。微藻生长速率较快,其蛋白质量分数高达70%,是单细胞蛋白的重要来源。微藻单细胞蛋白含有较多叶绿素、维生素和不饱和脂肪酸(EPA和DHA),且核酸含量较低,具有生产功能性高蛋白食品的潜力。

紫色光合细菌单细胞蛋白: 紫色光合细菌是一种厌氧的光合细菌,它通过细菌叶绿素(BChls)吸收近红外光,再利用自身丰富的类胡萝卜素吸收可见光。紫色光合细菌包括紫色硫细菌和紫色非硫细菌两类,它们通过CBB循环实现CO 2 的利用。紫色光合细菌不仅可以CO 2 为碳源进行光合自养生长,还可分解利用食品工业废水的有机碳、氮、磷进行异养生长,收集的紫色光合细菌生物质可用于生产单细胞蛋白。

不同种类微生物利用一碳底物合成单细胞蛋白的特性如表1所示。

3、天然一碳利用微生物的代谢网络

RuMP和XuMP途径

RuMP途径存在于甲基营养细菌中,例如甲醇芽孢杆菌和甲基营养型嗜甲基菌;而XuMP途径主要存在于甲基营养酵母中,包括毕赤酵母(Pichia pastoris)、多形汉逊酵母(Hansenula polymorpha)和博伊丁假丝酵母(Candida boidinii)。RuMP、XuMP途径十分相似,都是甲醛结合戊糖进行碳原子重排,一碳分子后续经由糖酵解途径进入中心碳代谢,而戊糖的再生保证循环的持续运转,这两个途径的主要区别在于甲醛进入磷酸戊糖途径的方式。在RuMP途径中,甲醛在己糖磷酸合成酶(HPS)催化下可以与5-磷酸核酮糖(Ru5P)结合生成6-磷酸己酮糖(H6P),然后在磷酸己糖异构酶(PHI)的作用下发生异构化,生成6-磷酸果糖(F6P)进入中心碳代谢(图2A)。在XuMP途径中,在二羟丙酮合成酶(DAS)的作用下,Xu5P的糖醛基团转移到甲醛上,生成3-磷酸甘油醛和二羟丙酮,二羟丙酮可利用二羟丙酮激酶(DHAK)进一步转化为磷酸二羟丙酮(DHAP),从而进入中心代谢(图2B)。

CBB循环

CBB循环的关键酶是RuBisCO,它催化CO 2 亲电加成到烯二醇形式的1,5-二磷酸核酮糖(RuBP),产生不稳定的C 6 中间体。C 6 中间体之后自发水解成两个3-磷酸甘油酸分子,在ATP水解驱动下再由NADPH进一步还原为3-磷酸甘油醛(图2C)。CBB循环生成1 个3-磷酸甘油醛分子需要消耗9 个ATP分子和6 个NADPH分子,能量利用效率较低,其关键酶RuBisCO的催化效率低且对底物CO 2 专一性差。优化其关键酶可以提高CO 2 利用效率,如Durão等通过过表达辅助RuBisCO折叠的GroEL/ES伴侣蛋白基因和敲除用于RuBisCO组装的RbcX伴侣蛋白基因,将RuBisCO的CO 2 羧化效率提高了大约3 倍。

丝氨酸循环

如图3A所示,甲酸通过多步催化反应首先生成活性中间体——5,10-亚甲基-四氢叶酸,在丝氨酸羟甲基转移酶(SHMT)的作用下,5,10-亚甲基-四氢叶酸将其一碳单元转移至甘氨酸从而生成丝氨酸,并经后续多步催化被依次转化为丙酮酸、草酰乙酸、苹果酸等重要中间体,苹果酸则与辅酶A反应生成苹果酰辅酶A,再进一步生成乙醛酸和乙酰辅酶A,乙酰辅酶A作为重要的中心代谢产物可进入后续代谢途径中。丝氨酸循环生成1 分子乙酰辅酶A理论上需要消耗2 分子ATP和3 分子NADPH,还原力和ATP消耗较少。

Wood-Ljungdahl途径

Wood-Ljungdahl途径(也称还原性乙酰辅酶A途径)可将CO 2 和甲酸转化为乙酰辅酶A进入中心碳代谢,该途径需要金属离子和铁氧还蛋白的参与。还原性乙酰辅酶A途径的关键酶包括一氧化碳脱氢酶、甲酸脱氢酶和亚甲基呋喃脱氢酶,这些关键酶对氧敏感,该通路主要存在于化能自养厌氧微生物中,包括产乙酸菌(如杨氏梭菌(Clostridium ljungdahlii))和产甲烷菌,其中产乙酸菌通过H 2 或NADPH提供还原力,而产甲烷菌利用金属还原剂提供还原力。Wood-Ljungdahl途径固定1 分子CO 2 仅需要消耗1 分子ATP和2 分子NADPH,是一种能源利用效率高、生物质产量高的一碳利用途径(图3B)。调控该途径关键酶的表达可显著提高微生物合成单细胞蛋白的效率。Straub等在伍氏醋酸杆菌(Acetobacterium woodii)中选择性过表达了Wood-Ljungdahl途径中4 个关键酶的基因和与ATP生成相关的两个基因,提高了伍氏醋酸杆菌的生长速率。

围绕乙酰辅酶A到琥珀酰辅酶A的一碳利用途径

围绕乙酰辅酶A到琥珀酰辅酶A的一碳利用途径如图4所示。

结论

目前利用一碳化合物实现大规模生产单细胞蛋白的微生物种类主要包括细菌和微藻。这两类微生物单细胞蛋白的蛋白质含量较高,但微藻细胞壁较厚,需要经过细胞破碎来提高单细胞蛋白的可消化性;而细菌蛋白的核酸(尤其是RNA)含量较高,需要增加核酸脱除工艺。与动物和植物蛋白生产相比,目前微生物利用一碳底物生产单细胞蛋白供人类食用成本较高,且相关培养工艺和生产技术仍不成熟。一些微生物单细胞蛋白如乙醇梭菌蛋白已用作饲料蛋白生产,可通过升级生产工艺提高单细胞蛋白的安全性和可接受度,进而用于生产食品蛋白。此外,虽然微生物单细胞蛋白可用于生产高营养食品原料、可直接改善终产品的功能属性,但目前受众面较窄。未来在保持其营养价值的前提下,既要确保单细胞蛋白的安全性和功能性,更要注重产品的颜色、气味、口味等感官特性为食用者所喜欢,从而提高产品在消费者中的可接受度,实现微生物单细胞蛋白食品的产业化发展。

专家简介

史硕博 教授,硕士生导师,北京化工大学软物质科学与工程高精尖创新中心青年PI、教授。2009年于天津大学获得博士学位,随后在瑞典查尔莫斯理工大学和新加坡科技局从事合成生物学研究。2017年加入北京化工大学,主要从事代谢工程与合成生物学的基础与应用性研究,构建和改造微生物使其能够直接用于高效生产化学品、植物天然产物等生物制品。目前担任《合成生物学》、BMC Biotechnology、Frontiers in Bioengineering and Biotechnology、Synthetic Biology and Engineering以及BioDesign Research等学术期刊编委。应邀参加科技部国家重点研发计划评审、领军人才评审;应邀参加国家自然科学基金面上(青年)项目以及中国农业科学院青年创新专项函评;担任北京化工大学分子诊断技术创新研究中心学术委员会委员。个人入选中国医药城第十三批“113人才计划”,发表的论文入选《生物工程学报》以及《合成生物学》年度优秀论文,同时入选“科技期刊双语传播工程”。近年来主持包括国家自然科学基金面上项目在内的国家级基金共10余项,相关成果发表在Metabolic Engineering、Nature Communications和Trends in Biotechnology等本领域高水平期刊,发表论文50余篇,被引1 800余次。

本文《微生物利用一碳底物生产单细胞蛋白研究进展》来源于《食品科学》2023年44卷3期1-11页,作者:傅晓莹,乔玮博,史硕博。DOI:10.7506/spkx1002-6630-20220827-327。点击下方阅读原文即可查看文章相关信息。

为构建多元化食物供给体系并兼顾生态环境保护,并形成以生物多样性保护促进食品生产的可持续性,北京食品科学研究院和中国食品杂志社将与北方民族大学、皖西学院、宿州学院、滁州学院于 2023年5月13-14日在中国宁夏银川 共同举办“ 生态保护与食品可持续发展国际研讨会 ”。本届研讨会将围绕新资源食品挖掘、动植物、微生物可替代蛋白、食用菌等食物资源的开发现状、重要创新进展及存在的问题开展研讨,探讨未来食品发展方向,通过展示我国生态保护与食品可持续发展等领域的最新科研成果,搭建科研单位与企业产学研结合的平台,共同促进我国食品产业发展快速踏入新里程。

Food Science of Animal Products(ISSN: 2958-4124, e-ISSN : 2958-3780)是一本国际同行评议、开放获取的期刊,由北京食品科学研究院、中国肉类食品综合研究中心主办,中国食品杂志社《食品科学》编辑团队运营,属于食品科学与技术学科,旨在报道动物源食品领域最新研究成果,涉及肉、水产、乳、蛋、动物内脏、食用昆虫等原料,研究内容包括食物原料品质、加工特性,营养成分、活性物质与人类健康的关系,产品风味及感官特性,加工或烹饪中有害物质的控制,产品保鲜、贮藏与包装,微生物及发酵,非法药物残留及食品安全检测,真实性鉴别,细胞培育肉,法规标准等。

投稿网址:

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

THE END
0.红球藻是一种主要生长在淡水中的单细胞微藻,细胞小但能大量累积虾青素缺氮及高光条件下叶绿素合成受阻或被破坏,含量下降,根据题意推测虾青素属于光合色素中的 类胡萝卜素。(5)红球藻是地球上光合作用效率最高生物之一,是陆生植物效率的10~50倍,推测可能的原因是下列的哪几项? BCD。A.红球藻数量多B.叶绿体数量多C.细胞小,相对表面积大D.吸收光能力强 【考点】光合作用的影响因素jvzquC41yy}/l‚jqq0ipo8xjkvo0cl623983/>672/:83>2;77k.fn;e45<37B77
1.藻类与生物制造团队基于合成生物学的工程学理念,综合利用材料化学、基因工程和定向进化等手段,构建特色光驱固碳底盘系统,高效生产高值化学品,助推微藻在能源、环境、化妆品、农业和医药等领域的应用。 3、湖北珍稀特产葛仙米保育与利用 葛仙米(学名:拟球状念珠藻,属蓝藻门),湖北珍稀特产,是一种药食同源的特色低等藻类植物,2021年3月被jvzquC41dku/jksw0gjv0ls142861:6271i36@7c3:;84@4rcik/j}r
2.桂团队与广东工业大学陈姗姗ISME:一种死藻和活菌共驱动的生物本研究首次证实了光照环境中死亡微藻细胞能够作为微生物光敏剂,驱动电活性微生物发生厌氧生物还原反应,该机制的发现为富营养化水体中藻类-细菌相互作用和某些生物地球化学过程提供了新的认识,此外,研究结果表明这种光电协同互作可以促进环境中电活性菌的富集和生长,这在自然界中具有生态学意义。 jvzquC41jlyxfq}0hclv0niw0et05j4631i24:66c5:37B81rcmf0qyo
3.太湖苕溪流域氮磷的生物学阈值评估苕溪 悬浮叶绿素a 底栖叶绿素a 总氮 总磷 阈值jvzquC41yy}/ewpk0eun0ls1Ctzjeuj1ELLEVxycn/NKZa7235712:<0jvs
4.小球藻培养方法!14篇(全文)利用叶绿素a的荧光特性,藻类形状对计数精度的影响大大降低,根据藻类荧光激发光波长,选择对应的滤光片,可以很容易将目标藻类与杂质区分开来,且利用荧光图像对藻类进行计数,对具有不同荧光激发光的藻类区分作用明显。本文将小球藻作为实验样本,利用小球藻叶绿素a的荧光激发特性,采集小球藻荧光图像,通过分析图像色度值特征,jvzquC41yy}/;B}wgunv0lto1y5gkujfww}w2t=0jvsm
5.中国近海有害藻华研究现状与展望在早期海洋学研究中, 重点关注以硅藻为优势类群的藻华现象, 如中纬度海域冬-春交汇之际出现的“春华(spring bloom)”, 或者在上升流海域出现的硅藻藻华等。研究中常常采用对浮游植物群落进行简约化处理的方法, 将叶绿素a作为指示浮游植物生物量的主要指标。而在有害藻华研究中, 研究重点逐渐转向甲藻等有毒有害的jvzq<84sfjt0roqwttbn7hp1jznn8m{{j€0497216532;52637/j}r
6.叶绿素aanalyticalstandardSigma叶绿素a analytical standard; CAS Number: 479-61-8; EC Number: 207-536-6 at Sigma-AldrichjvzquC41yy}/urloccretrhj0et0EW4|j1vsqmzev1yjcu4;83:6
7.培养基|上海光语生物科技有限公司例如,在食品和饲料行业,我们希望通过优化培养基,提高小球藻的蛋白质含量;而在生物能源领域,则需要诱导小球藻积累更多的油脂,用于生产生物柴油。 与实验室小规模培养相比,大规模培养对小球藻培养基提出了更为严格和特殊的要求。大规模培养通常在开放池或大型光生物反应器中进行,培养环境更为复杂,容易受到各种因素的影响,jvzquC41yy}/nnffkpmugl3ep1zbi8rgfk{n1ojgf
8.专题01走近细胞(期中真题汇编,北京专用)高一生物上学期冷箭竹林⑦一片冷箭竹林所有的生物A.⑤⑥③②①④⑦ B.③②①④⑤⑦⑥C.③②①④⑥⑦⑤ D.⑤②①④③⑦⑥7.(23-24高一上·北京房山区房山中学·期中)下列关于细胞学说的叙述,错误的是( )A.一切动植物都是由细胞构成的B.细胞是一个与外界完全独立的单位C.细胞是生物结构和功能的单位D.所有的细胞都jvzquC41yy}/|}m0eun1|thv1;53A55484ivvq
9.长江口滨海湿地水鸟对底栖微藻群落的营养级联效应(5)基于ASV代表序列信息和多度信息, 进行后续的物种分类学分析、物种组成分析和群落多样性分析等。 分别使用Shapiro-Wilk和Bartlett检验分析叶绿素a含量(底栖微藻生物量)、水鸟足迹多度、蟹类多度、螺类多度等数据的正态分布和方差齐性。如数据满足正态分布和方差齐性, 则使用以季节和实验处理为因素的双因素方差分析, jvzquC41yy}/rufpv/kdquti{0ipo8JP1nkygvj1ujuxC{ykenkC{Ujzgok/fxDctvodnnNF?3619?:
10.|资环学院李洁明课题组揭示全球微/纳米塑料对淡水微藻的毒理(a) 54篇文章使用随机效应模型得出的森林图; (b) 发表偏倚评估 之后通过亚组分析方法,利用涉及生长和生理的9个结局指标(生长、叶绿素-a含量、类胡萝卜素总量、胞外蛋白质含量、胞外多糖含量、SOD活性、MDA含量、细胞内外毒素含量),进一步评估MNPs尺寸、浓度和类型对淡水微藻的毒理效应规律及内在机制,以及不同微藻分jvzquC41pg}t0lfw0gjv0ls1mzk1:kd6c::d=7eh6>3:j=44fk42:>9cc8427mvo
11.微藻去除重金属镉的抗性机理研究进展但是低浓度Cd促进叶绿素合成的作用机理目前尚不清楚。Cheng等[22]研究了不同浓度Cd对绿藻Chlorella vulgaris的胁迫影响,发现随着Cd含量的增加,叶绿素a、b和类胡萝卜素的含量减少,在Cd含量为7 mg/L时藻的生长受到抑制,此时叶绿素a、b和类胡萝卜素含量分别下降93.37%、74.32%和71.88%。Nowicka等[21]研究发现jvzq<84lqwxocux0ko4be7hp1jznn8|uyzzcew4423=0:8yd39693B=20jzn
12.重金属对刚毛藻叶绿素a含量的影响及毒性机理的探讨刚毛藻 重金属 叶绿素a 毒性机理jvzquC41efse0lsmk0ipo7hp1Cxuklqg1EJNF66232>.495733:17=3jvo
13.中国科学院青岛生物能源与过程研究所然而,当环境中氮素耗尽时,细胞中通常吸收蓝光的叶绿素a会减少,导致更多蓝光进入NobZIP77所在的细胞核。这样,暴露在蓝光下的NobZIP77会从其目标DNA调控序列上解离,因此NoDGAT2B等TAG合成酶的转录表达被“解锁”,从而触发TAG的生产。 基于上述发现,该团队发明了名为BLIO的蓝光特异性诱导高产油技术。运用青岛星赛公司jvzq<84yyy4rkkjdv0ibu7hp1pkxu8p{l|532;7251z32;72556`8=5;969/j}rn
14.不同饵料藻对池蝶蚌生长与内壳色的影响.pdf绿值a、黄蓝值b和饱和度C值均有显著影响。其中,雨生红球藻组显示出较高 的内壳亮度(60.54±1.905)和饱和度(4.524±2.103),进一步通过拉曼光谱分析 确定,雨生红球藻组内壳珍珠层中类胡萝卜素相对含量(4.66±2.11)显著高于对 照组(1.51±0.99),验证了特定微藻饵料对促进池蝶蚌生长及改善内壳色彩的积 jvzquC41oc~/dxtm33>/exr1jvsm1;5471622A4:34722@5582682:<0ujzn
15.微藻特性及其在反刍动物生产中的应用本文对微藻的营养特性和生物学活性及其在反刍动物生产中的应用进行综述,为微藻应用于反刍动物生产提供参考。 Abstract Microalgae is abundant in species and rich in a variety of nutrients, possessing biological activities such as anti-inflammatory and anti-oxidation. In livestock production, microalgae can jvzquC41yy}/eqnpclgo0lto1ET0393346791LOCP46367;66
16.叶绿素检测检测机构丨中析研究所「分析检测中心」叶绿素a浓度:反映水体中浮游植物生物量的重要指标 叶绿素b含量:评估高等植物光合作用效率的关键参数 总叶绿素浓度:衡量样品整体光合色素水平的综合指标 脱镁叶绿素比例:指示叶绿素降解程度及样品新鲜度 类胡萝卜素比值:分析植物抗逆性与光合系统平衡性 荧光动力学参数:表征光能转化效率的核心数据 jvzquC41yy}/{sxdc0ipo8oezo5iish158880qyon
17.叶绿素a,Chlorophylla,音标,读音,翻译,英文例句,英语词典1998~ 2 0 0 0年对太湖梅梁湾的实测结果表明 ,在一定范围内叶绿素a的含量与温度呈现明显的正相关 ;NH4+ N和总氮 (TN)、总磷 (TP)含量在每年的八九月份最低 ,总含量与叶绿素a呈正相关 ,随着叶绿素a含量上升 ,N、P含量呈现下降趋势 ;K的含量与N、P相似 。 3. The fluorescence emission efficiencies ofjvzq<84fkezbnu3eqo5jpmz1227029558;;49;90jvs
18.纳米材料在石质文物生物病害治理中的应用研究进展一方面,这些微生物通过分泌有机酸和螯合剂,干湿循环中的机械应力改变及无机盐沉淀等不同机制造成石质本体的风化腐蚀;另一方面,细胞外多糖(EPS)、有机叶绿素a和b(绿色)或类胡萝卜素(橙色)等染色剂的存在使得石材表面形成多色的生物质膜,对石质文物的颜色产生影响[26]。大量研究证明TiO2的光催化氧化(PCO,the jvzq<84ucpbo~xgwo4dqv4c15532;7126881A:70jznn
19.ofTheTotalEnvironment期刊上发表论文:优化微藻相对于其他二价阳离子,Mg2+是叶绿素的重要组成部分,影响叶绿素合成,而叶绿素合成则会影响微藻的密度和活力,进而影响膜光生物反应器中的生物处理和膜污染行为。因此,本文研究了Mg2+的添加对藻菌MBR运行性能及膜污染特性的影响。结果表明,RMg的叶绿素-a/MLSS为33.95±1.44 mg/g,超过了R0中的30.04±0.88 mg/g(p<jvzquC41fnnk0ƒopw0kew7hp14636855295d8B77c6<1:;:1rcmf0qyo