自然和人工生境被子植物枝木质部结构与功能差异

摘要: 水是植物生存与生长的基础条件, 水分有效性影响植物木质部解剖结构、水力功能, 使之形成特定的适应特征。因此, 对比自然与人工生境中同一植物的水力功能与解剖结构差异, 有助于理解植物对水分环境的适应机理。该研究以湿润区三角槭(Acer buergerianum)、青冈(Cyclobalanopsis glauca)和女贞(Ligustrum lucidum)为研究材料, 对比分析了自然和人工生境中各物种的栓塞抗性(导水率损失50%时的水势(P50))、输水效率(比导率(Ks))和解剖结构(导管直径(D)、导管壁厚(T)、导管密度(N)、木质部密度(WD)、厚度跨度比(t/b)2)特征, 探究了同生境种内与跨生境、跨物种水平的效率-安全权衡关系, 量化分析了水力功能与解剖结构的关系。结果发现: 1) 3种被子植物在自然生境中Ks更大, P50更小, 与其更大的D、更小的(t/b)2有关。2)同生境种内Ks与P50不存在权衡。3)功能性状和解剖结构相关分析表明: 同生境种内D与P50不存在显著的相关关系; 除自然生境女贞外, T、(t/b)2均与P50正相关。相对于人工生境, 在水分有效性低或无额外浇灌的自然生境中, 植物通过增大导管直径显著提高其输水效率, 从而避免水势下降、降低潜在栓塞风险。

水是植物生存与生长的基础条件, 水分有效性影响植物木质部解剖结构、水力功能, 使之形成特定的适应特征。因此, 对比自然与人工生境中同一植物的水力功能与解剖结构差异, 有助于理解植物对水分环境的适应机理。该研究以湿润区三角槭(Acer buergerianum)、青冈(Cyclobalanopsis glauca)和女贞(Ligustrum lucidum)为研究材料, 对比分析了自然和人工生境中各物种的栓塞抗性(导水率损失50%时的水势(P50))、输水效率(比导率(Ks))和解剖结构(导管直径(D)、导管壁厚(T)、导管密度(N)、木质部密度(WD)、厚度跨度比(t/b)2)特征, 探究了同生境种内与跨生境、跨物种水平的效率-安全权衡关系, 量化分析了水力功能与解剖结构的关系。结果发现: 1) 3种被子植物在自然生境中Ks更大, P50更小, 与其更大的D、更小的(t/b)2有关。2)同生境种内Ks与P50不存在权衡。3)功能性状和解剖结构相关分析表明: 同生境种内D与P50不存在显著的相关关系; 除自然生境女贞外, T、(t/b)2均与P50正相关。相对于人工生境, 在水分有效性低或无额外浇灌的自然生境中, 植物通过增大导管直径显著提高其输水效率, 从而避免水势下降、降低潜在栓塞风险。

Abstract: Aims Water is essential for plant survival and growth. Water availability affects the anatomical structure and hydraulic function of xylem, and finally makes trees form specific acclimating characters. Therefore, comparing the differences of hydraulic function and anatomical structure between plants growing in field and garden habitats, can facilitate a better understanding on the acclimation of plants to water conditions. Methods We compared hydraulic safety (water potential at 50% loss of conductivity, P50), hydraulic efficiency (specific hydraulic conductivity, Ks) and xylem anatomy (vessel diameter (D), double thickness of vessel wall (T), vessel density (N), xylem density (WD) and thickness-to-span ratio of vessels ((t/b)2)), between field and garden plants of Acer buergerianum, Cyclobalanopsis glauca and Ligustrum lucidum. We also analyzed the differences of the relationship between xylem hydraulic function and anatomical structure in field and garden habitats. Important findings We found that: 1) The Ks was higher and P50 was lower in field habitat of the three angiosperms, which were related to the larger D and smaller (t/b)2. 2) The intraspecific correlation analysis between Ks and P50 showed that there were no efficiency-safety trade-offs. 3) Intraspecific correlation analysis of anatomical structure and functional traits showed that there was no significant correlation between D and P50; except for L. lucidum in garden habitat, the T and (t/b)2of the other trees was positively correlated with P50. Comparing to garden habitat, plants in field habitat with low water availability or no additional irrigation increased their diameter of vessels to improve water transport efficiency, so as to avoid the decrease of water potential and effectively reduce the potential risk of embolism.

Aims Water is essential for plant survival and growth. Water availability affects the anatomical structure and hydraulic function of xylem, and finally makes trees form specific acclimating characters. Therefore, comparing the differences of hydraulic function and anatomical structure between plants growing in field and garden habitats, can facilitate a better understanding on the acclimation of plants to water conditions.

Methods We compared hydraulic safety (water potential at 50% loss of conductivity, P50), hydraulic efficiency (specific hydraulic conductivity, Ks) and xylem anatomy (vessel diameter (D), double thickness of vessel wall (T), vessel density (N), xylem density (WD) and thickness-to-span ratio of vessels ((t/b)2)), between field and garden plants of Acer buergerianum, Cyclobalanopsis glauca and Ligustrum lucidum. We also analyzed the differences of the relationship between xylem hydraulic function and anatomical structure in field and garden habitats.

Important findings We found that: 1) The Ks was higher and P50 was lower in field habitat of the three angiosperms, which were related to the larger D and smaller (t/b)2. 2) The intraspecific correlation analysis between Ks and P50 showed that there were no efficiency-safety trade-offs. 3) Intraspecific correlation analysis of anatomical structure and functional traits showed that there was no significant correlation between D and P50; except for L. lucidum in garden habitat, the T and (t/b)2of the other trees was positively correlated with P50. Comparing to garden habitat, plants in field habitat with low water availability or no additional irrigation increased their diameter of vessels to improve water transport efficiency, so as to avoid the decrease of water potential and effectively reduce the potential risk of embolism.

表1 自然和人工生境样地的基本特征(平均值±标准误, n = 3)

Table 1 Basic characteristics for the field and garden habitats (mean ± SE, n = 3)

表2 自然和人工生境3种被子植物样树的基本特性(平均值±标准误)

Table 2 Basic characteristics of the sampled trees for the three species in field and garden habitats (mean ± SE)

图1 三种植物自然和人工生境水力功能性状图(平均值±标准误)。A, 比导率(Ks)。B, 栓塞抗性(导水率损失50%时的水势, P50)。不同小写字母表示种内差异显著(p < 0.05)。

Fig. 1 Hydraulic functional traits of three species in field and garden habitats (mean ± SE). A, The specific hydraulic conductivity (Ks). B, Embolism resistance (water potential at 50% loss of conductivity, P50). Different lowercase letters indicate significant differences within species (p < 0.05).

图2 三种植物自然和人工生境木质部解剖横切面光学显微镜图像。A, 自然生境三角槭。B, 自然生境青冈。C, 自然生境女贞。D, 人工生境三角槭。E, 人工生境青冈。F, 人工生境女贞。

Fig. 2 Examples of light microscopy images of xylem cross sections of three species in field and garden habitats. A, Acer buergerianum in the field. B, Cyclobalanopsis glauca in the field. C, Ligustrum lucidum in the field. D, A. buergerianum in the garden. E, C. glauca in the garden. F, L. lucidum in the garden.

图3 三种植物自然和人工生境木质部解剖结构特征图(平均值±标准误)。A, 导管直径(D)。B, 导管壁厚(T)。C, 导管密度(N)。D, 木质部密度(WD)。E, 厚度跨度比((t/b)2)。不同小写字母表示种内差异显著(p < 0.05)。

Fig. 3 Xylem anatomical structure traits of three species in field and garden habitats (mean ± SE). A, Vessel diameter (D). B, Double thickness of vessel wall (T). C, Vessel density (N). D, Xylem density (WD). E, Thickness-to-span ratio of vessels ((t/b)2). Different lowercase letters indicate significant differences within species (p < 0.05).

图4 三种植物自然和人工生境功能性状(Ks和P50)与解剖结构的网络分析。A, 自然生境三角槭。B, 自然生境青冈。C, 自然生境女贞。D, 人工生境三角槭。E, 人工生境青冈。F, 人工生境女贞。实线, 正相关; 虚线, 负相关。红色线条, p < 0.05; 灰色线条, p > 0.05。线条粗细表示相关系数(r)的大小。D, 导管直径(μm); Ks, 比导率(kg·m-1∙MPa-1·s-1); N, 导管密度(103∙mm-2); P50, 导水率损失50%时的水势(-MPa); T, 导管壁厚(μm); Ttob为(t/b)2, 厚度跨度比; WD, 木质部密度(g∙cm-3)。

Fig. 4 Correlation networks between functional traits (Ks and P50) and structural traits of xylem for the three species in field and garden habitat. A, Acer buergerianum in the field. B, Cyclobalanopsis glauca in the field. C, Ligustrum lucidum in the field. D, A. buergerianum in the garden. E, C. glauca in the garden. F, L. lucidum in the garden. Solid lines, positive correlations; dashed lines, negative correlations. Red lines, p < 0.05; grey lines, p > 0.05. Line thickness indicate the correlation coefficient (r) values. D, vessel diameter (μm); Ks, specific hydraulic conductivity (kg·m-1∙MPa-1·s-1); N, vessel density (103∙mm-2); P50, water potential at 50% loss of conductivity (-MPa); T, double thickness of vessel wall (μm); Ttob, thickness-to-span ratio of vessels ((t/b)2); WD, xylem density (g∙cm-3).

THE END
0.被子植物的结构层次由小到大依次为:细胞细胞→组织组织→器官器官C.图中a在被子植物的结构层次中属于器官 D.图在d所示的生理过程中,消耗的营养物质主要来自于子叶 查看答案和解析>> 科目:初中生物来源:题型: 云霄枇杷素以早熟、风味香浓、外观鲜艳、果面富有绒毛而著称,有“闽南开春第一果”之称. 近年来,云霄县引进以“解放钟”与日本“森尾早生”杂交选育而成的新品种“早钟jvzq<84yyy422:5lkcpjcx3eqo5d|||1ujoukhnfa6jb8jjh9gl8gn;g8dk54l873h>c7=568
1.被子植物特有的结构是()A.茎B.花C.果实D.种子题目和参考答案点评:被子植物能有如此众多的种类,有极其广泛的适应性,这和它的结构复杂化、完善化分不开的,特别是繁殖器官的结构和生殖过程的特点,提供了它适应、抵御各种环境的内在条件,使它在生存竞争、自然选择的矛盾斗争过程中,不断产生新的变异,产生新的物种. jvzq<84yyy422:5lkcpjcx3eqo5d|||1ujoukhnfa76:3j93fhg52A5776>6;l:g44g44n>89
2.组织透明法观察葡萄叶片生长过程中气孔与叶脉形态结构特征变化[6]杨鹭生,李国平.被子植物胚囊结构的观察方法[J].实验室研究与探索.2004,(2).DOI:10.3969/j.issn.1006-7167.2004.02.004. [7]卞凤娥,孙永江,牛彦杰,等.高温胁迫下根施褪黑素对葡萄叶片叶绿素荧光特性的影响[J].植物生理学报.2017,(2).DOI:10.13592/j.cnki.ppj.2016.0337. jvzquC41f0}bpofpifguc7hqo0io1yjtkqjjejq1|yymz}}423>14959
3.被子植物胚珠的主要结构是()A.珠被.珠孔.子房壁B.珠被.极核.卵(2012?涪陵区模拟)如图是玉米种子和菜豆种子结构图,仔细观察后,依图回答下列问题: (1)甲图种子将来发育成地上部分的茎和叶的结构是[ 3 ] 胚芽 . (2)乙图种子中贮存有大量的营养物质,供人们所食用的主要部分是[ 11 ] 子叶 . (3)菜豆种子和玉米种子一样,是被子植物.一粒菜豆种子是由菜豆雌花子房中的 胚珠 (结构)发育而jvzq<84yyy422:5lkcpjcx3eqo5d|||1ujoukhnfac897Bg687i:3Bjedd72f:f;73k1el5h:
4.西安市优质教育资源共享平台1.从结构上看,被子植物的种子是果实的一部分。 2.从形成过程来看,许多果实的形成离不开种子的作用,因为果实是由子房形成的,而子房的发育需要生长素的刺激作用,生长素来自发育的幼嫩种子。如果在子房的发育过程中破坏了种子的发育,或者是干扰了植物的正常传粉,不让胚和胚乳形成,给植物子房涂一定浓度的生长素,子房就jvzq<84yyy4ycniw{wt/ew4u5t=l1jgnqi5dduti1chmqp4ednuh0vgnqiHsq€xg0fu@dutikfC3eB5:38:89@f577g13@<:489bd>;276k